学术论文: |
部分论文列表:
[1] R. Zhang and Q. Zhai. A Weak Galerkin Finite Element Scheme for the Biharmonic Equations by Using Polynomials of Reduced Order. J. Sci. Comput., accepted. (SCI)
[2] Y. Cao and R. Zhang. Collocation method for Stochastic Volterra Integral equations. J. Integral Equations Appl., 2015, 27(1): 1–25.(SCI)
[3] R. Zhang, H.Song, and N. Luan. A weak Galerkin finite element method for the valuation of American options. Front. Math. China, 2014, 9(2): 455–476.(SCI)
[4] R. Zhang, B. Zhu, and H. Xie. Spectral methods for weakly singular Volterra integral equations with pantograph delays. Front. Math. China, 2013, 8(2): 281–299.(SCI)
[5] J. Wang and R. Zhang. Maximum principles for P1-conforming finite element approximations of quasi-linear second order elliptic equations, SIAM J. Numer. Anal., 2012, 50(2): 626-642. (SCI)
[6] Q. Guan, R. Zhang, and Y. Zou. Analysis of collocation solutions for nonstandard Volterra integral equations. IMA J. Numer. Anal., 2012, 32(4): 1755–1785. (SCI)
[7] H. Xie, R. Zhang, and H. Brunner. Collocation methods for general Volterra functional integral equations with vanishing delays. SIAM J. Sci. Comput., 2011, 33(6): 3303–3332. (SCI)
[8] K. Yan and R. Zhang. Analysis of continuous collocation solutions for a kind of Volterra functional integral equations with proportional delay. J. Comput. Appl. Math., 2011, 236: 743-752. (SCI)
[9] H. Brunner, H. Xie, and R. Zhang. Analysis of collocation solutions for a class of functional equations with proportional delays. IMA J. Numer. Anal.,2011, 31(2): 698-718. (SCI)
[10] Y. Yang, R. Zhang, C. Jin, and J. Yin. Existence of Time Periodic Solutions for the Nicholson's Blowflies Model with Newtonian Diffusion. Math. Methods Appl. Sci., 2010, 33(7): 922-934. (SCI)
[11] Y. Zou, L. Wang, and R. Zhang. Cubically convergent methods for selecting the regularization parameters in linear inverse problems. J. Math. Anal. Appl.,2009, 356(1): 355–362. (SCI)
[12] Y. Cao, R. Zhang, and K.Zhang. Finite Element and Discontinuous Galerkin Method for Stochastic Helmholtz Equation in Two- and Three-Dimensions. J. Comput. Math., 2008, 26(5): 702-715. (SCI)
[13] Y. Cao, R. Zhang, and K.Zhang. Finite element method and discontinuous Galerkin method for stochastic scattering problem of Helmholtz type in R^3. Potential Anal., 2008, 28(4): 301--319. (SCI)
[14] K. Zhang, R. Zhang, and C.-F. Wong. Second-order implicit -explicit scheme for the Gray-Scott model. J. Comput. Appl. Math., 2008, 213(2): 559-581. (SCI)
[15] K. Zhang, R. Zhang, Y. Yin, and S. Yu. Domain Decomposition Methods for Linear and Aemilinear Elliptic Stochastic Partial Differential Equations. Appl. Math. Comput., 2008, 195(2): 630-640. (SCI)
[16] Y. Zou, Q. Hu, and R. Zhang. On numerical studies of multi-point boundary value problem and its fold bifurcation. Appl. Math. Comput., 2007, 185(1): 527-537. (SCI)
[17] R. Zhang, K. Zhang, and Y. Zhou. Numerical Study of Time -splitting, Space-time Adaptive Wavelet Scheme for Schrodinger Equations. J. Comput. Appl. Math., 2006, 195(1-2): 263-273. (SCI)
[18] R. Zhang, Y. Zhou and K. Zhang, Regularization and Fast Collocation Methods for First Kind Integral Equations,J Inform. Comput. Sci., 2006, 3(3): 613-618. (EI)
[19] R. Zhang and Y. Zhou. Regularization Multiscale Galerkin Methods for First Kind Integral Equations. J Inform. Comput. Sci.,2005, 2(2): 409-414. (EI)
[20] R. Zhang and Z. Jiang. A Kind of Boundary Element Method for Electromagnetic Scattering Problems, Northeast. Math. J., 2004, 20(3): 253-256.
[21] T. He, R. Zhang, and Y. Zhou. Boundary-type quadrature and boundary element method. J. Comput. Appl. Math.,2003, 155(1): 19-41. (SCI)
|